Теплообменники для отопления и горячего водоснабжения (ГВС): пластинчатые и прочие аппараты

Содержание

Теплообменник для горячей воды от отопления — фото, видео

Теплообменники для отопления и горячего водоснабжения (ГВС): пластинчатые и прочие аппараты

Трудно представить современный дом или квартиру без горячего водоснабжения. Правда, цена вопроса сильно зависит от способа нагрева воды.

Часто применяют непосредственный нагрев: газовую колонку, проточный электронагреватель, бойлер. Хотя это не самый эффективный вариант. Намного экономичнее, проще и надежнее теплообменник для горячей воды от отопления.

При наличии источника тепла, в виде автономного или центрального отопления, энергию для подогрева воды можно получить оттуда, не тратясь на дорогостоящее электричество или газ.

Устройство и принцип работы

Теплообменник передает тепло от горячего теплоносителя холодному, при этом не происходит их перемешивание. В качестве теплоносителя используются вода, пар или масло. Для горячего водоснабжения источником тепла выступает теплоноситель системы отопления, а разогреваемой средой является холодная вода.

Конструктивно теплообменник состоит из группы гофрированных пластин, расположенных в параллельных плоскостях. Между ними идут каналы, по которым перемещается теплоноситель и нагреваемая жидкость, расположены они послойно и чередуются между собой. За счет такой конструкции возрастает площадь теплообмена.

Гофрирование выполняют в виде волн, которые ориентированы так, чтобы каналы соседних контуров располагались под углом друг к другу. Подключают входы и выходы по схеме, которая направляет жидкости навстречу одна другой.

Размер поверхности и материал пластин подбирают соответственно требуемой мощности теплообмена и вида теплоносителя. В современных высокоэффективных устройствах поверхность сформирована таким образом, что возбуждает завихрения у поверхности пластины, что увеличивает теплообмен, и не создает при этом заметного сопротивления потоку.

  • Не пропустите: Плюсы и минусы двухконтурного котла

Теплообменник включают в два контура:

  1. Последовательно в систему отопления или параллельно, при наличии регулирующих вентилей.
  2. Вход в холодный водопровод, а выход к потребителю ГВС.

Холодная вода протекает через теплообменник и нагревается от тепла системы отопления до нужной температуры, а затем попадает к потребителю.

Технические характеристики теплообменника

К основным характеристикам устройства можно отнести:

  • мощность (Вт);
  • предельная температура теплоносителя (°С);
  • производительность (л/час);
  • коэффициент гидросопротивления.

Мощность определяется площадью теплообмена, перепадом температур в двух контурах и числом пластин в теплообменнике.

Максимальная температура зависит от материала и способа соединения пластин.

Пропускную способность можно повысить, увеличив число пластин, так как их подключают фактически параллельно. То есть, каждая следующая пара пластин создает еще один канал для протока жидкости.

Как вы уже, наверное, догадались, большинство теплообменников разборные. Благодаря этому можно увеличивать и уменьшать число пластин и подбирать их тип и размеры. Производительность и мощность устройства должны быть достаточными для того, чтобы подогреть проточную холодную воду, но при этом в системе отопления не должна создаваться критическая ситуация.

Теплообменники для отопления и горячего водоснабжения (ГВС): пластинчатые и прочие аппараты

Для стандартных случаев, таких как: обеспечение горячей водой дома, квартиры или частного хозяйства, продаются уже готовые теплообменники с фиксированными характеристиками.

Расчет теплообменника

Выбирают устройство по мощности и пропускной способности, но для более точного результата нужно знать и другие характеристики:

  • тип среды в обоих контурах;
  • температуру теплоносителя в системе отопления;
  • допустимое снижение температуры теплоносителя после теплообменника;
  • температуру холодной воды;
  • требуемую температуру ГВС;
  • максимальный расход горячей воды;
  • удельную теплоемкость жидкости в обоих контурах.

Что касается расхода горячей воды, то он составляет:

  • для раковин – 40 л/ч;
  • для ванны – 200 л/ч;
  • для душевой – 165 л/ч.

Если вы подсоедините посудомоечную и стиральную машины к ГВС, то расход для них возьмите из паспорта или инструкции. Собрав все данные, сам расчет поручите сделать специалисту, так будет надежнее.

Если при расчете выяснится, что мощности для нагрева требуемого количества горячей воды недостаточно, то можно сделать две ступени подогрева. На практике это выглядит как два теплообменника. В первой ступени выполняется предварительный нагрев, в ней как источник тепла используется обратка отопления, у которой пониженная температура. Во второй ступени вода нагревается окончательно, уже горячей водой, поступающей от котла или котельной.

ecoblog.pro

Теплообменник для отопления для горячей воды

Теплообменник для отопления выступает важнейшей составляющей любого котла. От его работоспособности зависит «жизнь» обогревательного агрегата. Давайте рассмотрим, какой теплообменник для системы отопления позволит обеспечить эффективное функционирование котла и продлить срок его службы.

Что представляют собой агрегаты данной категории?

Теплообменники для отопления и горячего водоснабжения (ГВС): пластинчатые и прочие аппаратыПластинчатый теплообменник для отопления – технически сложная система, с помощью которой происходит передача энергии между горячим и холодным теплоносителем. На практике для этого применяются жидкости и пары, реже – газы, твердые основы.

Другими словами, теплообменник для отопления – это устройство, которое не имеет собственного источника тепла, а его функциональность обеспечивается энергией, что поступает от централизованной системы обогрева. То есть котел или печка не относятся к агрегатам данной категории по определению. Однако лежанку либо щит, что отражают тепло дымовых газов от печки, можно считать примерами теплообменника, так как от них происходит нагрев воздуха в помещении.

Эффективность передачи энергии здесь зависит от следующего:

  • Температурных различий между средами (наличие существенной разницы вызывает более внушительную передачу энергии).
  • Площади соприкосновении отдельных сред с теплообменником.
  • Показателей теплопроводности материалов изготовления конструкции.

По сути, теплообменник для горячей воды от отопления может быть представлен любой трубой, которая используется для передачи той или иной рабочей среды, что обладает температурой, отличной от показателей окружающего пространства.

Типы

Теплообменники для отопления и горячего водоснабжения (ГВС): пластинчатые и прочие аппаратыОдним из определяющих критериев при выборе теплообменника определенного плана выступает не только характер теплоносителя, но также его качества. Если в виде рабочей среды предполагается использование умягченной либо химически очищенной воды, предпочтение лучше отдавать пластинчатым конструкциям паяного типа. То же касается применения теплоносителей, которые не оставляют после себя никаких отложений на стенках конструкции, например спирт, фреон либо этиленгликоль.

Когда разговор заходит о масштабных тепловых пунктах, таких как котельные, здесь чаще всего можно увидеть теплообменник для горячей воды от отопления разборного типа. Применение подобных решений можно объяснить наличием низкокачественной рабочей среды, что используется в централизованных сетях обогрева.

Простота конструкции разборных пластинчатых агрегатов способствует их удобному обслуживанию, в частности быстрой разборке при необходимости удаления накипи из внутренних каналов. При этом замена деталей такого теплообменника, будь то фланцы либо задвижки, по силам даже неопытным мастерам.

Согласно способу передачи энергии, стоит выделить смесительный и поверхностный теплообменник для отопления. Первый функционирует согласно принципу распространения энергии при непосредственном контакте между отдельными носителями тепла. Второй тип передает энергию через пластины без непосредственного контакта рабочих сред.

Если необходимо использовать теплообменник для отопления в качестве элемента для подогрева воды в бассейне либо как охладитель в промышленных установках, применять в этих целях рекомендуется пластинчатые и паяные агрегаты. Подобные конструкции позволяют быстро достигать наиболее эффективного теплообмена между двумя жидкостями.

Материалы

Теплообменник для отопления дома может быть изготовлен из стальных либо чугунных пластин, соединенных методом пайки медным либо никелевым припоем. Конструкции, паяные медью, распространены в централизованных системах обогрева. В то же время системы, элементы которых соединены с использованием никеля, применяются в основном для обеспечения потребностей промышленных сфер и при необходимости работы с химически агрессивными средами.

Чугун

Теплообменники для отопления и горячего водоснабжения (ГВС): пластинчатые и прочие аппаратыОтдавая предпочтение чугунным теплообменникам стоит обратить внимание на несколько моментов:

  1. Достаточно внушительный вес, что обязательно следует учитывать при разработке проекта по обустройству котельной. Что касается внедрения подобных конструкций в систему обогрева частного дома, то последние должны отличаться малым объемом секций, минимальным количеством дымовых каналов, которые применяются для перемещения продуктов сгорания.
  2. Чугунные агрегаты отличаются возможностью секционной транспортировки в разобранном виде, что становится удобным при монтаже и последующем обслуживании.
  3. Несмотря на увесистость, материал довольно хрупок. Поэтому при перевозке и установке стоит избегать механических воздействий на элементы конструкции. Еще одна опасность – термический шок. При резком помещении в не остывший агрегат внушительного объема холодной рабочей среды, стенки теплообменника могут дать трещину.
  4. Чугун поддается как влажной, так и сухой коррозии. Первая образуется в результате воздействия на материал кислотного конденсата. Вторая медленно покрывает поверхности конструкции в виде пленки из ржавчины по мере эксплуатации. Поскольку теплообменники для отопления частного дома из чугуна обладают толстыми стенками, указанные процессы могут растянуться на долгие годы.
  5. Подобные системы долго нагреваются, но крайне медленно остывают, что значительно снижает расход топлива и повышает эффективность обогрева помещений.

Сталь

Теплообменники для отопления и горячего водоснабжения (ГВС): пластинчатые и прочие аппараты

Наличие стального «сердца» не приводит к существенному утяжелению системы. Поэтому водяной теплообменник для отопления, изготовленный из данного материала, часто применяют для обслуживания больших площадей.

Что касается удобства монтажа стальной конструкции, окончательная сборка, в отличие от чугунных агрегатов, происходит в заводских условиях. Цельный моноблок довольно сложно занести в тесное помещение. К тому же заводская сборка несколько осложняет ремонт и обслуживание системы.

Установленный стальной теплообменник в печь для отопления, который получил серьезные повреждения, практически невозможно вернуть обратно к жизни в домашних условиях. Приходится либо прибегать к полному демонтажу системы и отправке на ремонт в промышленный цех, или избавляться от конструкции, выполняя ее замену.

В то же время водяной теплообменник для отопления из стали не боится ни термического шока, ни существенных механических нагрузок. Материал отличается высоким показателем эластичности и поэтому отлично справляется с резкими температурными перепадами. Однако при длительном воздействии сильного холода или тепла на сварных швах могут образовываться мелкие трещины.

Если говорить о способности противостоять коррозии, стальной теплообменник подвержен лишь электрохимическим воздействиям. Особенно быстро при длительном контакте с агрессивными средами ржавчиной разъедаются тонкие стенки. При этом срок службы системы может планомерно снижаться на время от 5 до 15 лет. Исходя их этого, производители нередко покрывают внутренние стенки стальных теплообменников чугуном.

Системы из данного материала практически моментально разогреваются и так же быстро остывают. Несмотря на очевидное удобство при необходимости быстрого отопления помещений, подобное свойство имеет обратную, негативную сторону. Так, эффект усталости металла на отдельных участках конструкции может приводить к появлению мелких повреждений.

Как сделать расчет теплообменника?

Теплообменники для отопления и горячего водоснабжения (ГВС): пластинчатые и прочие аппараты

Выполнение самостоятельных расчетов выступает одним из наиболее распространенных вопросов от потребителей. На самом деле, справиться с задачей чрезвычайно сложно, поскольку производители теплообменников стараются скрывать секреты собственных разработок от посторонних, в том числе от пользователей.

По вышеуказанной причине становится сложно выяснить реальный расход энергии при передаче тепла. Если данный показатель будет заведомо низким, соответственно, КПД теплообменника окажется недостаточным для удовлетворения существующих потребностей.

Чтобы увеличить производительность системы, нередко приходится устанавливать объемные агрегаты. Впрочем, чтобы снизить количество используемых пластин теплообменника, достаточно воспользоваться специальной расчетной программой, которая имеется у каждого серьезного производителя отопительной техники.

Теплообменники для отопления своими руками

Теплообменники для отопления и горячего водоснабжения (ГВС): пластинчатые и прочие аппараты

Как собственноручно изготовить эффективную конструкцию, которая будет справляться с функциями теплообмена? Для этого достаточно вернуться к определению, которое характерно для устройств данной категории. Получается, что для сборки простого теплообменника достаточно взять металлическую трубу определенной длины, свернуть ее в кольцо и поместить в емкость, заполненную водой.

Благодаря выводу наружу выхода и входа трубы, можно получить функциональную конструкцию, которая будет либо нагревать, либо охлаждать рабочую жидкость, в зависимости от существующей потребности.

Теплообменник «водяная рубашка»

Помимо системы в виде змеевика, собственноручно можно изготовить теплообменник, известный как «водяная рубашка». Функционируют подобные системы на основе принципа распределения энергии между несколькими герметичными емкостями, помещенными друг в друга.

Теплообмен по данному принципу успешно применяется в малогабаритных котлах на твердом топливе. Несмотря на общую простоту конструкции, недостатком таких систем выступает наличие сравнительно невысокого эксплуатационного давления, на которое рассчитаны данные агрегаты. К тому же изготовлением теплообменников, функционирующих по принципу «водяной рубашки», должен заниматься опытный сварщик. Сконструировать и собрать такую систему из подручных материалов, не имея соответствующих навыков, довольно проблематично.

Теплообменник «трубная доска»

Наверное, наиболее сложным из всех вариантов, доступных для самостоятельного изготовления, выступает система, которую называют «трубная доска». Данное определение закрепилось за самодельными теплообменниками, что содержат основательное количество вальцовочных трубных соединений.

Подобные агрегаты представлены в виде трех герметичных емкостей. Две из них размещаются на противоположных краях конструкции и соединяются металлическими проводниками рабочей среды, что развальцовываются в торцах таких сосудов. Теплообмен выполняется в третьей – средней – части благодаря перемещению жидкой рабочей среды между емкостями по трубам.

В поиске альтернативных решений

Если нет возможностей для самостоятельной сборки теплообменника вышеуказанными способами, можно попытаться отыскать материалы для изготовления будущей системы в собственном чулане либо на свалке. Например, отличным решением для создания устройства в виде змеевика станет старый полотенцесушитель. Подойдет также любой бытовой радиатор, который не имеет протечек.

Что касается применения радиаторов из автомобильных печек, по сути, их можно сразу же использовать в качестве обогревательного элемента, объединив отдельные агрегаты переходниками для увеличения площади обмена тепловой энергией.

Эффективное устройство можно создать на основе старой водонагревательной колонки. В данном случае даже не придется практически ничего переделывать.

В итоге

Как видно, принцип функционирования теплообменников везде примерно одинаков. В зависимости от условий эксплуатации работать такие агрегаты могут как на нагревание, так и на охлаждение рабочей среды: газа, жидкости или твердого вещества.

При выборе заводского решения многое зависит от задач, которые возложены на теплообменник, а в случае самостоятельной сборки – от инженерной фантазии мастера.

fb.ru

Пластинчатый теплообменник для горячего водоснабжения

Обеспечить себе в доме или квартире горячее водоснабжение можно многими способами и непосредственный нагрев, например прямоточным электронагревателем или бойлером – не самый эффективный способ. В простоте и надежности отлично зарекомендовал себя пластинчатый теплообменник ГВС. Если есть источник тепла, например автономное отопление или даже централизованное, то тепло для нагрева воды вполне разумно взять от них, не тратя дорогостоящее электричество для этих целей.

Теплообменники для отопления и горячего водоснабжения (ГВС): пластинчатые и прочие аппараты

Устройство и принцип работы

Пластинчатый теплообменник (ПТО) обеспечивает переход тепла от нагретого теплоносителя холодному, при этом не перемешивая их, развязывая два контура между собой. Теплоносителем может быть пар, вода или масло. В случае с горячим водоснабжением чаще источником тепла является теплоноситель системы отопления, а нагреваемой средой – холодная вода.

Конструктивно теплообменник представляет собой группу гофрированных пластин, собранных параллельно друг другу. Между ними образуются каналы, по которым течет теплоноситель и нагреваемая среда, притом послойно они чередуются между собой, не перемешиваясь при этом. За счет чередования слоев, по которым текут жидкости обоих контуров, увеличивается площадь теплообмена.

Теплообменники для отопления и горячего водоснабжения (ГВС): пластинчатые и прочие аппараты

Схема работы теплообменника

Гофрирование чаше выполняется в виде волн, притом ориентированных так, чтобы каналы одного контура располагались под углом к каналам второго контура.

Подключение входов и выходов делаются так, чтобы жидкости текли навстречу друг другу.

Поверхность и материал пластин подбирается исходя из требуемой мощности теплообмена, вида теплоносителя. В особенно эффективных и продуманных теплообменниках поверхность формуется для возбуждения завихрений возле поверхности пластины, повышая теплообмен, не создавая сильного сопротивления общему току.

Теплообменник включается между двумя контурами:

  1. Последовательно к системе отопления или параллельно с наличием регулирующей арматуры.
  2. К входу от холодного водопровода и выходом к потребителю ГВС.

Холодная вода, протекая через теплообменник нагревается за счет тепла от системы отопления до требуемой температуры и подается на кран потребителя.

Основные характеристики пластинчатого теплообменника:

  • Мощность, Вт;
  • Максимальная температура теплоносителя, оС;
  • Пропускная способность, производительность, литры/час;
  • Коэффициент гидравлического сопротивления.

Мощность зависит от общей площади теплообмена, перепада температур в обоих контурах между входов и выходом и даже от числа пластин.

Максимальная температура задается подбором материалов и способом соединения пластин и корпуса теплообменника.

Пропускная способность повышается с увеличением числа пластин, так как они подключаются фактически параллельно, то каждая новая пара пластин добавляет дополнительный канал для тока жидкости.

Коэффициент гидравлического сопротивления важен при расчете нагрузки на систему отопления, где от этого зависит выбор циркуляционного насоса, немаловажен и для других источников тепла. Зависит от типа гофрирования пластин и размера сечения каналов и их количества.

Именно по этим параметрам подбирается в итоге теплообменник для конкретной ситуации. Чаще всего пластинчатые теплообменники имеют разборную конструкцию, в которой можно наращивать или уменьшать число пластин и выбирать их тип и размер. Мощность и производительность теплообменника должно хватать для того, чтобы нагреть проточную холодную воду, и при этом не создать критической нагрузки на систему отопления.

Для наиболее востребованных случаев, каким является обеспечение горячей водой частного хозяйства, дома или квартиры производятся готовые теплообменники с постоянными характеристиками.

Расчет

Выбор подходящего теплообменника сложно выполнить, оперируя только одной лишь его мощностью или пропускной способностью. Эффективность подготовки ГВС зависит и от состояния теплоносителя в первом контуре и во втором, от материала и конструкции теплообменника, скорости и массовой части теплоносителя, проходящего в единицу времени через пластинчатый теплообменник. Однако, естественно следует предварительно выполнить расчет, позволяющий прийти к определенному сочетанию мощности и производительности для выбора подходящей модели.

Базовые данные необходимые для расчета:

  • Тип среды в обоих контурах (вода-вода, масло-вода, пар-вода)
  • Температура теплоносителя в системы отопления;
  • Максимально допустимое снижение температуры теплоносителя после прохождения теплообменника;
  • Начальная температура воды, используемой для ГВС;
  • Требуема температура ГВС;
  • Целевой расход горячей воды в режиме максимального потребления.

Кроме этого в формулах для расчета задействована удельная теплоемкость жидкости в обоих контурах. Для ГВС используется табличное значение для начальной температуры воды, чаще +20оС, равное 4,182 кДж/кг*К. Для теплоносителя следует отдельно находить значение удельной теплоемкости, если в его составе имеется антифриз или другие присадки для улучшения его качеств. Аналогично для централизованного отопления берется приблизительное значение или фактическое на основании данных теплокоммунэнерго.

Целевой расход определяется количеством пользователей для горячей воды и количеством устройств (краны, посудомоечная и стиральная машинка, душ), где она будет использована. Согласно требованиям СНиП 2.04.01-85 необходимы следующие значения расхода горячей воды:

  • для раковины – 40 л/ч;
  • ванная – 200 л/ч;
  • душевая – 165 л/ч.

Значение для раковины умножается на количество устройств в доме, которые могут использоваться параллельно, и складывается со значением для ванны или душевой в зависимости от того, что именно используется. Для посудомоечной и стиральной машинки значения берутся из паспорта и инструкции и только при условии, что они поддерживают использование горячей воды.

Второе базовое значение – это мощности теплообменника. Рассчитывается исходя из полученного значения расхода жидкости и разницы температур воды на входе в теплообменник и на выходе.

P = m * С *Δt,

где m – расход воды, С – удельная теплоемкость, Δt – разница температур воды на входе и выходе ПТО.

Для получения массового расхода воды следует расход, выраженный в л/ч умножить на плотность воды 1000 кг/м3.

КПД теплообменников оценивается на уровне 80-85%, и многое зависит от конструкции самого оборудования, так что полученное значение следует разделить на 0,8(5).

С другой стороны ограничением по мощности будет расчет, выполненный со стороны первого контура с теплоносителем, где, используя уже разницу допустимых температур для системы отопления, получаем максимально допустимый забор мощности. Конечный результат будет компромиссом между двумя полученными значениями.

Если забора мощности для нагрева нужного количества горячей воды не хватает, то разумнее использовать две ступени подогрева и, соответственно, два теплообменника. Мощность распределяется между ними поровну от требуемого расчета. Одна ступень выполняет предварительный нагрев, используя в качестве источника тепла обратку отопления с пониженной температурой. Второй ПТО уже нагревает окончательно воду за счет горячей воды с подачи отопления.

Схема обвязки

Подключают теплообменник к системе отопления несколькими способами. Самый простой вариант с параллельным включением и наличием регулировочного клапана, работающего от термоголовки.

Теплообменники для отопления и горячего водоснабжения (ГВС): пластинчатые и прочие аппараты

Обязательными являются запорные шаровые вентили на всех выводах теплообменника, чтобы иметь возможность полностью перекрыть доступ жидкости и обеспечить условия для демонтажа оборудования. Регулировкой мощности и, соответственно, нагревом горячей воды должен заниматься клапан с управлением от термоголовки. Клапан устанавливается на подводящую трубу от отопления, а датчик температуры на выход контура ГВС.

При цикличной организации ГВС с наличием накопительной емкости устанавливается дополнительно тройник на входе нагреваемого контура для включения холодной водопроводной воды и обратки по ГВС. Избежать ненужного тока в обратном направлении в ветке горячей и холодной воды не даст обратный клапан.

Недостатком этой схемы является сильно завышенная нагрузка на систему отопления и неэффективный нагрев воды во втором контуре при большем перепаде температур.

Гораздо продуктивнее и надежнее работает схема с двумя теплообменниками, двухступенчатая.

Теплообменники для отопления и горячего водоснабжения (ГВС): пластинчатые и прочие аппараты

1 – пластинчатый теплообменник; 2 – регулятор температуры прямого действия: 2.1 – клапан; 2.2 – термостатический элемент; 3 – циркуляционный насос ГВС; 4 – счетчик горячей воды; 5 – электро-контактный манометр (защита от «сухого хода»)

Идея заключается в использовании двух теплообменников. В первой ступени используется с одной стороны обратка системы отопления, а с другой холодная вода из водопровода. Это дает предварительный нагрев примерно на 1/3 или половину от необходимой температуры, при этом не страдает обогрев дома. Включение контура выполняется последовательно с байпасом, на котором уже закреплен игловой вентиль, с помощью которого регулируется объем теплоносителя.

Второй ПТО, вторая ступень, подключаемая параллельно системе отопления – это с одной стороны подача горячего теплоносителя от котла или котельной, а с другой уже подогретая на первой ступени вода ГВС.

Регулировкой первой ступени заниматься нет нужды. Устанавливаются лишь шаровые вентили на все четыре отвода и обратный клапан на подачу холодной воды.

Обвязка второй ступени идентичная параллельному подключению за исключением того, что вместо холодной воды подключается уже подогретая вода с первой ступени.

udobnovdome.ru

Что такое теплообменник для горячей воды, их виды и использование

Эффективный теплообменник для горячей воды от отопления позволяет существенно расширить возможности оборудования, работающего на обогрев помещений. Этот элемент выступает одним из основных агрегатов любого типа котла. Чем продуктивнее он работает, тем дольше и качественнее сумеет прослужить обогревательное оборудование.

Теплообменники, предназначенные для отопления в доме, бане, являются довольно сложными с технической точки зрения система. С их помощью осуществляется передача энергии между двумя теплоносителями — холодным и горячим. Чаще всего используют пар и жидкость, а несколько реже — газ.

Если говорить проще, то теплообменник для отопления представляет собой устройство без собственного теплового источника. Работа осуществляется за счет использования энергии, идущей от вашей системы отопления внутри дома, бане, на предприятии. Потому печка, котел — это не теплообменники. А вот отражатель тепла газов дыма — да, поскольку за счет него осуществляется дополнительный обогрев помещения.

На эффективность передачи тепловой энергии влияет несколько факторов:

  • Разница температуры между двумя средами. Если разница будет большой, тогда эффективность будет выше;
  • Площадь контакта сред и теплообменника;
  • Теплопроводность используемых в конструкции материалов, принимающих непосредственное участие в процессе теплообмена.

Отсюда можно сделать вывод, что теплообменником от отопления для подачи горячей воды может служить любая труба, которая будет передавать тепло от источника с температурой, отличающейся от температуры помещения.

Что использовать

В зависимости от тех или иных критериев, показателей, следует выбирать определенный тип теплообменника.

  1. Если рабочей средой является смягченная или очищенная вода, тогда лучше использовать пластинчатые теплообменники.
  2. Аналогичный вид теплообменника подходит для теплоносителей, которые не оставляют на стенках системы отложения. Это спирт, этилен и пр.
  3. Разборные теплообменники чаще всего встречаются в крупных пунктах подачи тепла — в комплексной бане, котельне. Обусловлено это тем, что в котельнях качество используемого теплоносителя, то есть воды, оставляет желать лучшего.
  4. Разборные теплообменные устройства для воды и системы отопления хороши тем, что их легко обслуживать, разбирать, удалять накипь из внутренних конструкций. При этом выполнить ремонт или замену отдельных элементов разборного или пластинчатого типа по силам даже новичках.
  5. Паяные и пластинчатые теплообменники служат для ситуаций, когда нужен агрегат для отопления и подогрева воды в бане, бассейне. Плюс они отлично зарекомендовали себя как охладители промышленного оборудования.

Используемые материалы

Теплообменники, применяемые для горячего водоснабжения и работающие от системы отопления, могут выполняться из двух типов материалов:

Речь идет о пластинах, выполненных из данных материалов. Соединяются пластины между собой никелем или медью по средствам припайки и пайки соответственно.

Системы отопления с медной пайкой широко распространены в системах, отвечающих за централизованное отопление домов. А никелевый припой характерен для систем отопления, работающих на потребности промышленной сферы и при работе с химически агрессивными теплоносителями.

Теперь поговорим об особенностях пластин.

Чугун

Теплообменники для отопления и горячего водоснабжения (ГВС): пластинчатые и прочие аппаратыВыбирая для подогрева воды дома, в бане от отопления чугунные теплообменники, важно детально изучить их основные особенности.

  1. Они обладают большим весом, что следует принимать во внимание при разработке проекта системы отопления и водоснабжения котельной.
  2. Чугунные устройства можно транспортировать по секциям, что существенно упрощает процесс доставки оборудования, его сборку и обслуживание.
  3. При внушительном весе, чугунные теплообменники достаточно хрупкие. Потому при транспортировке важно избегать механических повреждений.
  4. Чугунные теплообменники для отопления и водоснабжения боятся термического шока. Это говорит о том, что стенки агрегата могут деформироваться, если внутрь горячего теплообменника резко подать большое количество холодной среды.
  5. Для чугуна характерна влажная, сухая коррозия.
  6. Основное преимущество заключается в медленном остывании, хотя нагрев также осуществляется медленно. Это способствует заметной экономии на работе системы отопления и дальнейшего водоснабжения.

Сталь

Теплообменники для отопления и горячего водоснабжения (ГВС): пластинчатые и прочие аппаратыДалее поговорим про стальные теплообменники, которые могут служить для подачи горячей воды через систему отопления.

  1. Сталь не делает конструкцию очень тяжелой, потому система не пострадает. Это оптимальное решение для ситуаций, когда требуется теплообменник для подачи горячей воды, обслуживающий большую площадь.
  2. Финишная сборка устройств стального типа осуществляется в заводских условиях. Они представляют собой моноблоки достаточно внушительных габаритов, что усложняет их доставку на место через узкие проемы.
  3. Самостоятельно вернуть теплообменник из стали к жизни в случае повреждения практически невозможно, потому можно либо заменить агрегат полностью, либо демонтировать и отправить на ремонт в цех.
  4. Для стальных теплообменников не страшен термический шок, механические нагрузки. Материал достаточно эластичен. Но все же длительное нахождение под воздействием чрезмерного тепла или холода может привести к появлению небольших трещин в местах сварных швов.
  5. С точки зрения коррозии, для стального теплообменника опасность представляет только электрохимический ее тип. При постоянном воздействии агрессивной среды, может существенно сокращаться срок службы агрегата.
  6. Из-за основных недостатков стали для теплообменника, часто внутренние стенки покрываются чугуном, делая тем самым конструкции максимально надежными, эффективными.
  7. При прохождении тепла через теплообменник стального типа, система быстро нагревается, но быстро и остывает. Отсюда большие затраты на топливо.

Нюансы расчета теплообменника

Итоговая цена системы может составлять от 200 долларов до 2000 у.е., а то и больше. Здесь главное рассчитать необходимые показатели теплообменника, чтобы определить оптимальные характеристики оборудования, подходящего для ваших целей.

Но на практике выполнить эту задачу самостоятельно сложно. Все потому, что производители тщательно скрывают секреты своих разработок от посторонних лиц. Это приводит к необходимости обращаться напрямую к производителям, поставщикам.

Они, используя специальные расчетные программы, выполняют соответствующие подсчеты для конкретно вашей ситуации. Предварительно выполняется оценка ситуации, проверяется текущее состояние объекта. Плюс производитель обязательно интересуется целями, которые вы преследуете, и финансовыми возможностями. На основе всей собранной информации выполняется грамотный расчет.

Чтобы вы не переплатили за систему водоснабжения и отопления, рекомендуем обращаться к проверенным фирмам, которые зарекомендовали себя с положительной стороны, имеют хорошую репутацию на рынке.

Рейтинг статьи — рейтинг материала: 4,00 из 5 Loading…

etapech.ru


Как устроен пластинчатый теплообменник?

Пластина в теплообменнике имеет форму узкого параллелепипеда. Ее поверхность покрыта бороздками, что дополнительно увеличивает площадь теплообмена. Существуют также оребренные пластины, цель та же – максимально увеличить площадь соприкосновение холодной среды с теплонесущей металлической перемычкой.

Из чего делают теплообменники?

Схема теплообменника

Материал большинства теплообменников – медь, латунь, титан и различные сплавы с высоким показателем теплопроводности. Нержавеющая сталь проводит тепло в несколько раз хуже меди, однако ее плюсом является коррозионная стойкость. Впрочем, чисто стальные устройства встречаются довольно редко.

Самые высокую теплопроводность в мире имеет кристаллический углерод – графит, алмаз, графен. Эти природные и синтетические материалы в 5 – 10 раз лучше проводят тепло, чем серебро и медь. И если алмазные теплообменники для коттеджа представить сложно, то трубы и пластины из искусственных углеродистых материалов – вполне реальное будущее.

Дополнительную эффективность пластинчатых теплообменников для отопления обеспечивает то, что пластины плотно сжаты между собой специальными боковыми плитами. Щель между пластинами составляет лишь несколько миллиметров. В итоге практически вся масса холодной волы проходит в непосредственной близости от пластин и быстро нагревается. Комплекс пластин называется регистром или в просторечии батареей. В одной батарее обычно 7 – 10 элементов, но их может быть гораздо больше. Регистр полностью перекрывает собой контур с холодной жидкостью, образуя частую решетку из параллельных элементов.

Как бороться с накипью?

Внутренние каналы, по которым циркулирует горячая вода, имеют извилистую форму, полученную методом холодной штамповки. Это сделано для того, чтобы в процессе циркуляции в массе рабочего теплоносителя все время возникала турбулентность (разнонаправленные завихрения). Благодаря им в пластинчатых системах на стенках оседает гораздо меньше накипи, нежели, например, в простых полых трубках.

промывка теплообменника

Количество накипи зависит во многом от качества водоподготовки. Если в системе отопления используется вода из скважины (а так бывает в абсолютном большинстве случаев), то при выборе теплообменника надо обязательно учитывать ее pH свойства. Даже если среда щелочная (“мягкая”, мылкая на ощупь), накипь будет образовываться в любом случае и систему нужно будет периодически чистить.

Пластинчатые теплообменники могут быть разборными, паяными и литыми. Первый вариант наиболее удобен с точки зрения обслуживания и чистки каналов от накипи. Для чистки применяются механические средства, абразивные материалы и минеральные кислоты (соляная или серная). При использовании едких жидкостей необходимо убедиться, что они не повредят металлический корпус и внутренние каналы.

Как подобрать теплообменник?

Производство теплообменников в России

Перед тем, как купить и смонтировать теплообменник для отопления типа вода – вода, нужно произвести профессиональные теплотехнические расчеты и выяснить, достаточно ли будет получаемой энергии для эффективного обогрева здания. Вполне возможно, параллельно установке системы отопления нужно будет повысить энергосберегающие свойства дома – поменять окна, дополнительно утеплить стены, потолки и кровлю. Необходимо также обеспечить минимизацию теплопотерь в самой зоне теплообмена, надежно изолировав контуры с теплоносителями.
Основной недостаток теплообменника для горячей воды от отопления – места соединения пластин между собой. Соединение производится с помощью уплотнений из натуральной или искусственной резины. Абсолютной надежности такая конструкция обеспечить не может и имеет ограничения по предельно допустимой температуре среды (+180°C) и давлению (25кгс/см²). Это значит, что такие системы оптимальны для применения в сравнительно небольших по площади домах, в которых установлены котлы ограниченной мощности.

Leave a Comment

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.